Strain energy examples ,What is strain energy in structural analysis , what is strain energy in strength of materials , elastic strain energy 2021

These topics cover in this page (strain energy से related सब टॉपिक के लिए भी इसे ही लीख सकते हैं )
  1.  Strain energy for Axial loading ,
  2. Strain energy for Bending moment
  3. Strain energy for castiglious theorem


What is strain energy:-                                                                  

 When a gradual load is applied on an elastic body , then the body is strained and work is done on the body which is stored in the form of internal energy. This internal work done by the body in resisting the straining is called strain energy. 


Strain energy For Axial loading :-

     
Strain energy For Axial loading diagram


                           U = P× ΔL/2

According to hook's law.             

   ̈̇   P = Aσ
                      σ = ∈E
                      
                           U = (σA) × (∈L)/2
                              = σA∈L/2
                              = σA/2   ×  σL/E.          
 ̈̇  A×L = volume 
                             = σ²A/2E  ×  volume
  
                         U = PδL/2
                      V  U = p²L/2AE            

  ̈̇ δL = PL/AE     

                     For non uniform body  
                         U = ∫  P²/2AE    dx         
(used for trusses)


Strain energy For Bwnding moment:-

w.k.t.       
                          U = σ²ɓ/2E × volume.       
                 = ∫ (My/i)² / 2E  ×  dA  ×  dx.                  
                  
                         M/i = E/R = σ / y
                       
                           M/i = σ / y 
  
                            σ = My/i

̈̇ y² × dA = second moment of inertia(I)
    
                   =  ∫ m² y² / 2Ei²  ×  dA  ×  dx
                  =  ∫  M² /2Ei²  ×  i  ×  dx
               U =  ∫M² / 2Ei  dx.       
          ( used for frames ) 
    
                      U = ∫ T² / 2GJ  dx.     
         ( used for tilting moment ) 


From castiglious theorem:- 

 
               ∂u/∂p = Δ       ,        ∂u/∂m = θ
 
                Δ = ∂/∂p{ ∫  M²/2Ei  dx } 
 
                Δ = ∫  M (∂M/∂p)/Ei  dx


     

Comments

Post a Comment

Popular posts from this blog

What is castiglious I and II theorem and it's applications 2021

Kaolinite, illite, montmorilonite, How the clay minerals kaolinite, illite and montmorillonite are formed by schematic diagram.

Bettie's law (Rayleigh theorem),What is Bettie's law? 2021